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Abstract

Humans have a strong intuitive sense of the trajectory of
a ball as it makes contact with another plane by inferring
physical properties of the ball[11]. In order to emulate this
effect in both simulated and real environments, we have cre-
ated a Convolutional Neural Network (CNN) known as the
Early Fusion Bounce Network (EFBNet) that takes in video
data to predict the position and trajectory of ellipsoids. We
created a generator to produce a diverse simulated dataset
randomized across dozens of physical axes for training our
CNN, and used this generator along with a manually cre-
ated dataset of real-world data to test the model. The results
show intuitive physics using EFBNet works exceptionally on
simulated data. It also shows strong promise for positional
predictions on real-world data with a comparable error to
the baseline model PIM[20].

1. Introduction and Motivation
In the real world, an observer has limited information

to understand the scene before them. Humans have been
shown to have an ingrained sense of projectile motion, es-
pecially when presented with visual data[11]. This involves
a neural processing of certain properties of the moving ob-
ject such as its shape, material, restitution, etc. as it affects
its current movement in the air.

Of course in a simulated environment, emulating this
idea for an AI could be as simple as handing it the keys
to the exact algorithm that creates the underlying factors of
physical interactions. However, this would not be intuitive
physics nor would it be an useful emulation of human op-
ponents; whether they are simulators or game engines, in a
simulated sense this would not be cutting-edge emulation.
In a real world environment, there are different factors to
consider. This could include a situation that forces vision-
based analysis for data in a scenario that cannot be repro-
duced or re-analyzed and only has limited visual stimulus
available. One area where such a situation may arise is the
field of robotics. Since many of the simulated environments
are generally used to emulate real-world physics, a work-

ing knowledge of intuitive real-world physics could be re-
inforced by a simulated one and vice versa. There is work
that must be put in to achieving that which will be covered
in this paper.

Our research question is as follows: Given a video of a
elliptical object falling with the force of gravity and collid-
ing with the ground plane, can we predict the trajectory and
position of the ellipsoid based on the past trajectory? This
is especially intriguing for cases where the trajectory vec-
tor appears to be random for shapes that are not perfectly
spherical and take a more irregular shape.

Previous research typically covers a single aspect of this
issue, but nothing comprehensive. One main component
of existing research is the proof that neural networks can be
used to a) predict outcomes using data in a manner similar to
humans by learning from history to infer context rather than
relying solely on the current context, and b) use this method
to make predictions of physical properties and outcomes.
Although these methodologies are close to the end goals for
our experiments, they generally lack in the ability to create
a diverse data set and thus test in very specific controlled
environments or for very specific situations. This does not
allow us to get a dynamic model for general or practical
situations.

Our research provides a tool that can generate a diverse
set of simulated physical interactions in a diverse environ-
ment that can auto-generate a database of practically any
size for various training. We also provide a neural network
that can visually train on samples in an .npy format that
can learn how different objects behave in different environ-
ments. Lastly, we have manually created a data-set of real-
world samples in order to verify its accuracy and its use
outside of simulated environments.

2. Related Work Study
The 3D-PhysNet architecture can be applied for the ob-

ject when another solid acts a force upon it; especially in a
simulated environment. [25] Previous work has also been
performed in how to properly manipulate these environ-
ments to gain more information for prospective studies. [19]
Various advancements that have been made in this research
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field for the purpose of video games which must also con-
sider different materials and their physical properties in sim-
ulated environments. [24].

It is important to consider the underlying factors in the
behavior of an object in a physical environment. Prior re-
search approaches this with an approach similar to how hu-
mans think. In order to accurately evaluate how an object
would move, one has to first calculate the underlying factors
behind an object’s movement. [3] These studies do exactly
that in order to possibly locate the aspect that contributed to
that movement. [26] There are papers that also have boiled
down this philosophy into computational terms even when
coming from a human-centered mindset, mostly through a
stochastic approximation of a Bayesian inference by recall-
ing collisions of multiple objects. [2] Work in this context
has to also consider how objects interact with each other
while keeping in mind how to classify what an active object
is and what is individually but trivially contributing to the
ambient environment. [4]

Models must be trained to test different data sets such as
ones for collisions. [21] Some tangential research may have
been able to provide a baseline on how to evaluate forces
that are applied to a solid such as a poke from a uniformly
controlled robotic hand [1]

Many other papers seem to be run on simulations that
give underlying information to the user. This is the biggest
difference between a simulated and real environment. One
must consider different methods such as dealing with noise
and cluttered environments. [9]

There are several machine learning methods which
would assist in combining both simulated and real envi-
ronment in a data-set may be proved useful not only for
sample size, but also verifying the accuracy of any such
simulation. [15] Prior research has proven that deep unsu-
pervised convolutional networks can be used for computer
vision based reinforcement learning methods. [13] In fact
there are implementations that can save significant amounts
of time while still providing strong results even on raw vi-
sual input data. [15]

Materials also come into play in prior research. For ex-
ample the physics of blocks that are specifically made of
wood have been implemented for a 3D simulation [16].
Once again that is backwards from our intentions of at-
tempting to see what material something is made of (versus
already knowing what it is made of). Other examples in-
clude billiard balls colliding with each other in a simulation
which are made of polyester in perfect spheres [7], specific
human interaction with objects [8], and the physics of rope
that are generally made of strung up hemp. [17] [22]

A physical emulation using computer vision techniques
can allow us to infer more physical properties of an environ-
ment and object with limited visual stimuli. We will apply
engineering concepts with a similar physical work in order

to significantly extend its reach and apply a practical benefit
to it. [14]

A project that we should implement is one that can ex-
tract information from either raw visual data or a simula-
tion. One paper focuses on predicting meaningful forces
whose effects lead to accurate imitation of the motions ob-
served from videos. [6] This marries two concepts that can
be used in order to work between the two mediums. Sim-
ilar work has been done in the field of intuitive physics,
where a model predicts the next frame given an input
video.Using one of these models, we could back-propagate
the coefficient of restitution using the predicted frames. An-
other important thing to consider is the ability to process a
large data-set once it’s generated. Previous work exists us-
ing Convolutional Neural Networks with a massive video
dataset. [12] Although this work revolves around a much
simpler classification than we’re hoping to reach, it is a
strong baseline method that is proven on a dataset that is
order of magnitude larger than what it is required for our
intuitive physics model.

3. Baseline
For our baseline, we compare against a similar approach

by Purushwalkam et al. 2019 which also predicted post-
bounce locations and trajectories, although for arbitrary sur-
faces and only for perfect spheres[20]. While their full
model aims to predict bounce trajectories given a single still
image and the bounce location, we look specifically a com-
ponent of their model, which they call the Physics Inference
Module (PIM). The PIM takes as input ten frames preced-
ing the bounce as well as physical parameters including the
coefficient of restitution to predict the following ten frames
of the sphere’s trajectory. The median error of these predic-
tions was approximately 10cm over a training set of simu-
lated data, with the real world error for their Core Trained
PIM ranging from around 15cm to 30cm depending on the
estimated coefficient of restitution. Our algorithm is dif-
ferent in that it does not explicitly seek to encode the un-
derlying physics of the trajectory and instead learn it im-
plicitly from the training data. In addition, we predict only
the three-dimensional velocity and position vector instan-
taneously after a bounce, not the frames after which might
exacerbate any error.

4. Methodology
4.1. Dataset Generation

The tool we developed in order to generate a massive
dataset of simulated videos of different spheroids bounc-
ing off of the ground plane. Simulation was done using a
Python module called PyBullet [5], and several scene fac-
tors are randomized. The first randomized factor is the tex-
tures that comprise the ground plane to simulate visual dif-
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ferences in the environment. Other visual variations include
the color of the spheroid which is randomized for the same
reason via an (r,g,b) tuple parameter. A camera was also
setup in a randomized three-dimensional coordinate for its
location and another randomized three-dimensional vector
to represent the angle at which it was viewing the spheroid.
This created a strong sense of the kind of limited informa-
tion an agent would have when viewing these situations (i.e.
things that involve interacting with spheroids typically isn’t
from the same point of view).

A spheroid is created using a geometric mesh using var-
ious randomized ellipses, masses, and restitution in order
to simulate spheroids made of different material, mass, size
along with the levels of inflation and deformity during col-
lisions. A randomized scale factor is also found and applied
to each ellipsoid mesh in order to reduce the impact of scale
discrepancies and misreadings during the domain transfer.
Another three-dimensional vector is randomized in order to
create a point for which the spheroid is released from its the-
oretical grip. Lastly, the lighting in the scene is randomized
through two three-dimensional vectors: one for its location
and another for its properties which include diffuse, ambi-
ent, and specular.

Once these “objects” in the environment are all set and
scripted, its animation is activated, but our script only
records crucial information. In order to standardize its out-
put, files are stored in .npy format. These can be read in to
process a visual format, but also just read in as pure data.
It should be noted that every video is designed to be 30
frames with its first collision with the plane being in the
middle (14/15th frame). This allows for a high degree of di-
versity in the samples while providing the right uniformity
to train a neural network. Data is recorded until the second
bounce which is compared with its first bounce to obtain
its orientation and scale of movement. The final position,
orientation, and velocity at the time of the second bounce
is recorded specifically for each sample into a dictionary
(hence the .npy file). This entire process is run on a loop
to generate many samples. For each of our runs, we gen-
erated 30,000 samples for a training set along with 1,000
additional samples for a test set.

It must be noted that we also used concepts based around
domain randomization to complete the bridge between sim-
ulated datasets and real world datasets. It was not practical
for us to get a large enough sample in order to train on real
world so a form of domain transfer was required. Due to the
convenience that our data generation script provides, this
was the optimal way to build our model. Domain Random-
ization involves the training on a large and diverse domain
that could represent many different possible environmental
setups. It is expected that a majority of these environments
are not representative of the real-world. However EFBNet
would train on all of these environments including the one

that is the most representative of reality. When a real world
sample is predicted, the model should be able to recognize
and account for that environment. This is a well-established
form of domain transfer. [23]

4.2. CNN: Early Fusion Bounce Network

We’ve adapted a version of the ImageNet architecture in
order to implement the Early Fusion Bounce Convolutional
Neural Network (“EFBNet”) as proposed by Karpathy et al.
[12]. The main change made to the ImageNet architecture
was modifying the first set of image filters to convolve in
3 dimensions: the spatial dimensions of the clip (uv co-
ordinates) and also the time dimension. Essentially, this
allows the first convolution layer to combine information
from all frames of the clip at once. In shorthand, the full
architecture is C(96, 11, 3, 10) −N − P − C(256, 5, 1) −
N −P −C(384, 3, 1)−C(384, 3, 1)−C(256, 3, 1)−P −
FC(4096) − FC(4096) where C(d, f, s) indicates a con-
volutional layer with d filters of spatial size f × f , applied
to the input with stride s. The first layer is of the form
C(d, f, s, t), where t is the number of frames in each clip.
FC(n) is a fully connected layer with n nodes. P are spa-
tial max-pooling layers of dimension 2 × 2 with a stride
of 2, and N are ReLu normalization layers. The input of
this network are tensors of shape (C, T,H,W ), where C is
the number of color channels, T the number of frames in
the clip, H and W the dimensions of a single image. In
our case, our tensors were of shape (3, 10, 170, 170). The
output of the network is a vector in R6, where the first 3
entries are the predicted landing position of the spheroid,
and the last 3 are the predicted velocity of the spheroid after
that landing. All positions are given relative to the camera,
and its associated loss function is simply Euclidean distance
from the ground truth R6 vector.

Initial results with this network were lacking, as the net-
work accurately predicted the direction of where a spheroid
lands after its first bounce, but had massive error in the mag-
nitude of that position vector. It was suspected that this was
due to the network having no conception of scale for each
clip, so predicting the precise distance of a point relative to
the camera was impossible. Our attempt to remedy this was
to amend the input to EFBNet to also include the length
of the spheroid’s longest axis, which we call a scale fac-
tor. There is no change to the architecture, we simply add
the scale factor to the flattened input vector of the first fully
connected layer.

EFBNet is implemented using a python library known as
PyTorch. [18] Once the training begins, our implementation
records the loss along with the most recent model. This is
implemented with a 5 layer CNN. Additionally, in order to
account for the scale of each sample, a scale label is found
when generating data and is applied to every sample in the
CNN. This was to allow for easy manual runs with the al-
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gorithm that could be stopped without the loss of progress
easily or the resuming of training if it were to be interrupted.
Previous research indicates that this process would be very
slow and command a high-cost for training [10]. For this
reason, it was trained using machines at The Minnesota Su-
percomputing Institute (MSI) on machines with powerful
GPUs in order to take advantage of NVIDIA CUDA.

Refer to our repository for the complete codebase1.

4.3. Real World Data Collection

We manually created 63 real world clips to test on, using
13 different spheroids. Videos were captured of spheroid’s
being tossed/dropped in front of the camera, such that the
first bounce’s location was in frame. These videos were
manually edited down to 10 clips, cropped to a center
square, then resized to 170 × 170 pixels. Due to our lim-
ited tools during the COVID-19 pandemic, we only had
single-camera setups and, as such, were unable to get pre-
cise measurements on true velocity for real-world samples.
The ball’s second bounce location was accurately recorded,
though. We also measured the longest axis of each spheroid,
as additional input to EFBNet. Ideally with better equip-
ment, we would’ve been able to also record accurate veloc-
ities for real-world samples.

4.4. Evaluation

In order to test our model, the latest model predicted
position and velocity for each video. For values where
we could not properly measure velocity, we used a place-
holder value which is our results analysis does not include
real-world velocity estimation. Future work would include
analysis of the model’s accuracy in prediction of real-world
post-bounce velocities. Euclidean distance, cosine distance,
and percent error in vector magnitude are used as our met-
rics to evaluate our quantitative results.

5. Results

Our model was tested on simulated dataset of 1000 gen-
erated samples.

The median error in position was 0 over all samples. This
means that the predicted position using a converged model
from EFBNet was successfully able to predict the trajec-
tory of almost every single sample. Figure 1 shows the
same effect is seen when measuring with cosine distance
on the simulated test dataset with a zero median error. It
should be noted that the possibility of over-fitting was ad-
dressed by verifying the models after various points of con-
vergence. What we found was that the differences in the
results were trivial when considering the change in error
with each epoch. Considering this fact and the size of the

1https://github.com/miniyoung84/balls

Figure 1. The percent error in the magnitude of position, above,
and the Euclidean and cosine distances, below, based on 1000 un-
seen simulated videos.

sample, we can say with confidence this is a proven model
for consistent simulated samples.

Figure 2. The median errors in velocity over a set of 1000 unseen
simulated videos.

We can see the performance of the model on the final
velocities of spheroids as seen in Figure 2 for Euclidean
distance which was low, indicating high accuracy. Figure
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Figure 3. Results of real-world testing using a set of 63 manually collected videos.

2 shows a similar result with cosine distance with a low
error. This proves our model can also accurately predict the
direction of the final velocity of simulated data.

We were able to test on the real world dataset to mixed
results (see Figure 3). Ideally, we would have more real-
world samples to evaluate with, but due to time constraints,
we only collected 63 samples. As such, we advise the reader
not to take these results as fact: it is highly possible that our
samples were recorded under ideal (or sub-optimal) con-
ditions for EFBNet’s classification. For example the real
world data sample featured many different spheroids, initial
angular velocities, and initial velocities, on top of having
different backgrounds, lighting conditions, etc.

Even after incorporating scale into EFBNet via the
longest axis measurement, our model struggles to predict
the magnitude of the position vector, more so than PIM.
That said, the cosine distance for the direction of the tra-
jectory is generally low (median of 0.278) which indicates
promise about EFBNet’s ability to predict the direction of
the spheroid’s bounce, if not the distance. More investiga-
tion is required in order to verify potential problems and
promise areas.

6. Conclusion
6.1. Limitations and Future Work

Extensions of this work would see use of proper
equipment to accurately measure velocities of real-world
spheroids. This would allow us to properly investigate the
data with the direction of the trajectory vector of the test
set and the implications of this method of domain trans-
fer. Other possible extensions include use of a more ro-
bust domain transfer method, and higher-fidelity simulation
of training data. Our survey of possible domain transfer
methods showed that another strong possibility for domain
transfer would be training a separate Generative Adversar-
ial Neural Network (GAN) to transform real-world samples
into the simulated domain, or vice versa. For simulation,
PyBullet which was easy to set up and use, but doesn’t offer
the fidelity of dedicated rendering software like Blender or

Maya. Future work may also attempt to generate simulated
data which appears closer to our reality, to ease the process
of domain transfer.

6.2. Summary

Using the CNN EFBNet, we were able to successfully
predict trajectories and velocities of objects in a simulated
environment. Although our algorithm models the position
and velocity of a bouncing spheroid, as opposed to the ac-
tual motion profile by the baseline PIM algorithm, given
accurate position and velocity estimations we can solve for
the full profile using basic Newtonian physics. That said,
EFBNet seems to perform comparably to the PIM model,
although the models tackle somewhat different tasks, so it
is difficult to directly compare. EFBNet would likely per-
form better on a singular physics engine that would only
have variations in a subset of the factors that we random-
ized. For real world data, there was some promise shown in
the ability to predict the direction of the trajectories. Lastly,
we developed a robust tool to generate many samples in a
simulated environment that provides a lot of information per
sample.
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